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Abstract. A Lax pair for the Goryachev-Chaplygin top (GCT) is presented. The pair is 
obtained from that for the Kowalewski top recently found by Reyman and Semenov-Tian- 
Shansky. Explicit formulae are constructed in terms of theta functions for the dynamical 
variables. 

1. Introduction 

The system under consideration is a special case of the motion of a heavy rigid body 
with a fixed point, discovered by Goryachev and Chaplygin in 1900 [ 11. It represents 
a symmetric top with the principal moments of inertia satisfying I, : I2 : I, = 1 : 1 : and 
the centre of mass located in the equatorial plane. We shall describe the motion of 
the top in the moving frame. The dynamical variables are the angular momentum 
M = ( M ,  , M,, M3) and the field strength vector p = ( p ,  , p 2 ,  p 3 )  in the moving frame. 
The fundamental Poisson brackets of these variables are given by 

{Mi ,  M,> = E i j k M k  { M i ,  pj> = E U k P k  { p i ,  pj> = O  i, j ,  k = 1,2,3. (1) 

(2) 

The Hamiltonian of the Goryachev-Chaplygin top (GCT) is given by 

H = i ( M :  + M i +  4M:) - 2pl.  

The system (2) admits an extra integral of motion provided that 

( M , p ) =  M,P,+M*P*+M3P3=0. (3) 
Note that ( M ,  p )  is a Casimir function for the Poisson brackets (1). A more general 
system described by 

H = 4 ( M i  + M i  + 4kf: + 4yM3) - 2p1 (4) 

is called the Goryachev-Chaplygin gyrostat (GCG). It is also integrable if ( M ,  p)  = 0 
[2]. Both GCT and GCG are known to be integrable in the quantum case as well [3]. 
In passing we mention two recent papers where CCT is studied in a different way. In 
[4] the R-matrix technique is used to solve both the classical and the quantum problems. 
In [5] the geometry of the Liouville tori for GCT is thoroughly studied using the general 
technique developed in [6]. In particular, a close connection is established in [5] 
between GCT and the periodic Toda lattice with three particles. Our aim in the present 
paper is to establish a connection between CCT and the Kowalewski top (KT). Our 
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starting point is the Lax pair for KT which was recently found in [ 7 ] .  Using this result 
we present a new Lax pair for GCT. This in turn allows us to derive new explicit 
formulae for the solutions of GCT in terms of hyperelliptic theta functions. These 
formulae are especially interesting since, unlike most other known cases, the solutions 
of GCT are not meromorphic in the time variable. Our formulae are of course in 
complete agreement with the qualitative analysis of the solutions given in [ 5 ] .  

2. The Lax pair for the Goryachev-Chaplygin top 

We briefly state the basic results of [ 7 ] .  Recall that, by definition, the Kowalewski top 
is a heavy rigid body with a fixed point with the principal moments of inertia satisfying 
II : 12: I3  = 1 : 1 :; and the centre of mass located in the equatorial plane. The Hamil- 
tonian of KT is 

H = f ( M : + M z + 2 M : ) - p l .  (5) 

H =f(M:+ Mi+2M:+2yM3)-p l  ( 5 ’ )  

A more general system with the Hamiltonian 

is called the Kowalewski gyrostat (KG) .  The Lax pair for KG constructed in [ 7 ]  is 
based on the use of the loop algebra of S0(3 ,2) .  It arises from a general construction 
due to the same authors [8]. For our present purposes it is more convenient to use a 
different version of this Lax representation obtained from that presented in [ 7 ] ,  by 
using the four-dimensional (spinor) representation of S0(3 ,2 ) .  Namely, put 

P2-iP1 0 
1P3 

L(A)  = 

i -i y 0 - M2 - iM,  0 
0 iY 0 -M2+ iM1 

M 2 - i M l  0 -2i( M3 + 4 y) -2ih +i 0 M 2 + i M ,  2ih 2i(M3+f y )  

( 7 )  I *  i(M3 + 4 Y 1 0 - f( M 2 + i M , )  0 
0 -i( M3+f y )  0 - f ( M2 - iM,)  

f ( M 2  - iM1)  0 - i (M3+$y)  -ih 
0 $ (  M 2 + i M l )  ih i ( M3 + t Y 1 

dL /d t  + [ L, A]  = 0. 

i A ( A )  = 

Then the Hamiltonian equation of motion defined by ( 5 ’ )  is equivalent to the Lax 
equation 

Equations (6) and ( 7 )  were communicated to us by Reyman and Semenov-Tian- 
Shansky. 
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An important observation is that by removing the first column and the first row of 
the Lax matrix (6) we get a Lax matrix for GCG. Clearly, we get 

3 Y  -iP3/A - M2 + i M I  

2i M3 + 3 i y 
L (A)=  ip3/A -2iM3-$iy -2iA+(p2-ip,)/A i M2+iM1 (pr+ipl) /A + 2 i A  

Put 

(9) 
-3iM3-iiy 0 - M, + i M I  

[ M 2 e i M ,  2i A 2i M3 + $i  y 

A(A) = -2iM3-3iy -2iA 

Then the Lax equation is equivalent to the Hamiltonian equation with the Hamiltonian 
(4), provided that the constraint (3) is satisfied. 

For future use we introduce the notation 

L= L- ,  A - ’ +  L,,+ L ,  A (10) 
for the coefficients of the Lax matrix (8). 

We note that some formal connection between GCG and KG was already noticed 
in [SI. Our result shows there is a connection between the two systems on the Lax 
representation level. By setting y = 0 in (8) and (9) we get a Lax pair for CCT. 

The Lax representation with a spectral parameter for GCT and GCG permits us to 
apply the powerful machinery of algebraic geometry [ 101 to solve the equations of 
motion. In the following we shall consider only the first case, i.e. put y = 0. Formulae 
for the general case may be easily obtained in quite the same way. The technique we 
use is a modification of the Krichever scheme [ l l ]  proposed by Its [12]. We apply it 
to derive explicit formulae for the dynamical variables of the top (see 0 6). As far as 
we know, such formulae are not available in the literature. 

3. The spectral curve 

It is well known that dynamical systems given by the Lax equation can be linearised 
on the Jacobian of the determinant curve of the Lax matrix. Let i% denote the curve 
given by the equation det( l (A) -PI) = 0. The symmetry relation 

1 -l)L(A)[l 1 -1) (11) 

* 
gives rise to an involution on r, 

7: (A ,p)+( -A ,p) .  

It is natural to consider the quotient curve r = ? / T  given by the equation 
2 p3 + p(2H -4z - l / z )  -2iG = 0 z=A 

where H =f(M:+ M:+4M:)-2pl istheHamiltonianand G =  M,(M:+ M:)+2M,p3 
is the Goryachev-Chaplygin integral. It is equivalent to the Chaplygin curve [ l ]  

y2 = ( p3 + 2 H p  - 2iG)‘ - 16p2 y = 8 z p  - p 3  - 2 H p  +2iG. 

Note that we always suppose M,p, = 0, pf = 1. 
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Let 0, , O2 and CO, ,  C O ~  denote the two pairs of points of r for which z = 0 and z = CO, 

respectively. The three-sheeted covering r + C 3 z of the z plane is unramified at 0, , col 
and ramified at 02,  co2. The covering P +  r can be described by a suitable cut contour 
2 running from 0, to col on I?: is obtained by gluing together two copies of r along 
2. P+ A 3 A = d z  is a three-sheeted covering. 

Let us choose the sheets in such a way that the points O , ,  CO, lie on the sheet I ,  
02, C O ~  lie on the sheet I1 and TO*, T C O ~  lie on the sheet 111. The function A = d z  is 
double valued on r and changes sign when analytically continued along a closed path 
which intersects 2'. We fix 2' by the condition 

p + -2A A +a2 

p + - l / h  A '02. 

4. Properties of the Baker-Akhiezer function 

Our main goal is to construct explicitly the Baker-Akhiezer function +(P) = 
(c12, 1 4 ~ ) ~  which is analytic on ? and satisfies 

L* = p* 4, =A* .  (12) 
We may assume that + satisfies the symmetry relation (see (11)) 

I I T P ) = [ - l  1 -1) *(P) P E P .  

Hence the component G2 may be regarded as a single-valued function on r, while +, 
and G3 are double valued on r and change sign when analytically continued along a 
closed path intersecting 2'. We may assume that 9, are defined on r\2' and satisfy 
the symmetry relation 

* : 3 w  = -41,3(P) *;(PI = * ; ( p )  (13) 
for P belonging to the cut 2'. 

properties which characterise it completely. 

phic on T \ a 2 .  

behaviour: 

With a suitable normalisation, the Baker-Akhiezer function CC, has the following 

( i )  4 is analytic on I'\2', satisfies the symmetry relations (13) on 9 and is meromor- 

(ii) In the neighbourhood of the points O , ,  CO, ,  co2, 4 has the following asymptotic 

+-['$;)')) forP+O,  
O(A-') 

9A + O(1) 

(iii) The divisor of poles of $, D = yI  + y 2 ,  has degree 2 and does not depend on t .  
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(iv) The normalisation constant q above satisfies the differential equation q , / q  = 
-3i M3 whence 

q = a exp( -3i 1' M, d t ) .  

The Baker-Akhiezer function + with these properties satisfies (12) where L and A 
are almost the Lax matrices for GCT, with only the condition 

(L-1112 = -(L-1)2, (14) 

not being fulfilled automatically. This last condition will be imposed in the last stage 
of the computation. As we shall see, it amounts to a suitable choice of the integration 
constant a. 

Let "(A) be the 3 x 3 matrix whose j th  column is the branch of + on the j th  leaf 
of f-, A expressed as a function of A. The involution T permits leaves I1 and 111. 
According to (13) we have 

WW=(--' l - l ) W ( A ) ( l  1) 

and the asymptotics of W ( A )  are given by 

where T satisfies 

The coefficients of L(A)  = L1 A-'  + Lo+ L ,  A are related to the matrices 4, S, T in these 
expansions by 
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5. Construction of the Baker-Akhiezer function 

To write down explicit formulae for the functions t,bl, t,b2 and t,b3 we must define a 
number of objects, most of which are standard in finite-gap integration. Let d u , ,  du, 
be the normalised Abelian differentials on  r, so that Ja2 du, = 2.rr-G,,, B,, = Jh, du,. 
The theta function is defined by 

e(x)= 1 exp[i(Bm, m ) + ( x ,  m ) ] .  
m e Z 2  

Let w ( P ) ,  A(P) and a ( P )  be the normalised Abelian integrals of the third and the 
second kind, respectivelyt, 

P ew ea a 
a 1  a A 2 +  O(1) f 

0 2  CA + O(A*) e O(1) 
0 0 2  A + b +  O(A-') dA-'+ O(A-*) -2A + O(A-') 

Put 

There are some useful relations between the different constants in (16) and (17). 
Comparing the singularities we get 

A2/p = e*' (18) 

which implies 3w + 2A = 0 modulo the periods. Let us choose the paths [a2, O,], 
[a,, a,] in such a way that an  exact equality holds: 

3w + 2A = 0. (19) 

Also, using (18) we get 

e " = ( d / A ) ( l - 3 b / A +  . . . )  A +a* 

where b is the constant term in the expansion of ew at CO, (see (16)). Using the general 
properties of Abelian integrals we obtain 

f = 3 b  d = ae. (20) 

Let u = J L 2 d u  be the Abel transform. Choose D ~ J a c r  in such a way that the 
divisor of zeros of e (  u + D )  on r is precisely D, the divisor introduced in the definition 
of rC, above. We are now in a position to write down explicit formulae for rC,. We have 

t These are  uniquely specified by their behaviour in the neighbourhoods of the points E , ,  x 2 ,  0,. 
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The expression for the function can also be written in a different form, 

6. Formulae for the dynamical variables 

Substituting asymptotics of i,h3 at a2 into (15) we obtain 

q = a  exp(3bt) (e(ey;;4)3” 

where we have used the form U = ( 1 / 2 h ) V + .  . . of the Abel transform near 00’. 

and (L-,)21 we use equations (21) and ( 2 2 ) ,  respectively. We get 
Now we must satisfy the last condition (14). To obtain the expressions for ( L - l ) , z  

( L - )  $2(02)  c 1 
d O J 4  a 4 

e ( v t  + D + w ) e( v t  + D + ; w )  e ( D )  
e’( v t  + D )  e(o + ; U )  

exp(ft) 121- 

This implies that 

1 e’(D) 
e ~ ’ ( D + $ u ) ’  

a 2  = -- 

To compute pz+ipl  and p2-ip, we also use both the expressions (21) and (22) for +, 
Pz+iP,= -+3(02)/$*(02)  Pz-iP,= -icp(~,)$2(0,)/cp(02). 

Finally, taking into account (19) and (20) we obtain the following formulae for 
the physical variables: 

M2+iM, = -2& e(vt+o+i,,( e ( v t + D )  )’Iz 

e(  v t  + D + U )  e( v t  + D + 
e ( v t + D - $ w )  e ( v t + D + @ )  ( e ( V t + D )  

MZ-iM1 = -2& 
e ( v t + D )  

i a B ( V t + D + w )  
M ---1n + b i  

3 - 2  a t  e ( v t + D )  

e ( v t  + D + 2 ) e ( vt + D )  
pz+ip l  = i c  e’( v t  + D + 

e ( v t  + D - ) e ( v t  + D + 
p2 - ip, = -ic ez( v t  + D )  
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The square roots in (23) are quite characteristic and unusual. Their presence is 
predicted by PainlevC analysis of the equations of motion, which shows that the leading 
powers of singularities in t are half integers [6]. The sign change of the square root 
in (23) leads to the transformation M ,  + - M I ,  M z +  - M 2 ,  p 3  + -p3  preserving the 
equations of motion. 

The paths [a2, CO,] ,  [m2, O,] are fixed already (see (19)). Constants a, c and e are 
defined by the integrals upon these very paths. 
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